Pumpenstufe

Dreidimensionale Darstellung der untersuchten Pumpenstufe. Bilder: Jaberg & Partner

  • Kreiselpumpen, die in der Petrochemie zum Einsatz kommen, müssen die speziellen Standards des American Petroleum Institute (API) erfüllen.
  • Für die Anforderungen der API 610 müssen die Pumpenhydrauliken etwa unter anderem über eine stabile Pumpenkennlinie verfügen.
  • Am Beispiel einer vertikalen Rohrgehäusepumpe zeigt der Beitrag, wie sich nicht nur die Kennlinienform verbessern, sondern auch der Wirkungsgrad optimieren und die Druckpulsationen reduzieren lassen.

Wenn Kreiselpumpen in der Petrochemie zum Einsatz kommen sollen, müssen sie spezielle Standards des American Petroleum Institute (API) erfüllen. Für die Anforderungen der API 610 müssen die Pumpenhydrauliken unter anderem über eine stabile Pumpenkennlinie verfügen. Speziell bei Kleinstfördermengen ist dabei darauf zu achten, dass Kennlinien-Instabilitäten vermieden werden und die Förderhöhe der Pumpe mit abnehmendem Durchfluss stetig zunimmt – oder zumindest nicht sinkt. Speziell bei Halbaxialpumpen mit nachgeschalteter Rückführpartie muss das Hauptaugenmerk dabei auf den schaufelfreien Raum zwischen Laufrad und Diffusor gelegt werden, in welchem typischerweise Bereiche mit rotierender Strömungsablösung (Rotating Stall) auftreten, die sowohl die Pumpenförderhöhe als auch den Pumpenwirkungsgrad beeinträchtigen. Des Weiteren legt die API 610 auch die Bandbreite von Druckpulsationen in unterschiedlichsten Betriebsbereichen fest, die es nachweislich einzuhalten gilt.

Durchmesser als limitierender Faktor

Der freien Gestaltung der Hydraulik sind in einer vertikalen Rohrgehäusepumpe allerdings Grenzen gesetzt. Vor allem der Durchmesser des Pumpenaggregats ist dabei ein limitierender Faktor. Um die Anzahl der nacheinander angeordneten Pumpenstufen zu reduzieren, muss es gleichzeitig das Ziel sein, die Förderhöhe je Stufe zu maximieren. Dies wirkt sich wiederum negativ auf das Kavitationsverhalten der Saugstufe aus, welches bei einer Hydraulikoptimierung niemals vernachlässigt werden darf.

Der hier vorgestellte Ansatz zur Optimierung der Pumpe ist daher ein typisches Beispiel einer Mehrziel-Optimierung. Dabei gilt es, Geometrieparameter der Pumpenhydraulik zu finden, die sich sowohl auf die Kennlinienform als auch auf den Wirkungsgrad, das Kavitationsverhalten und das Schwingungsverhalten positiv auswirken – bei minimalem Durchmesser und möglichst geringer Stufenlänge

Schnittdarstellung der Pumpenstufen.
Schnittdarstellung der Stufen.

Optimierung in verschiedenen Bereichen

Dem Problem der Mehrziel-Optimierung begegneten die Ingenieure von Prof. Jaberg & Partner mit einem multidisziplinären Optimierungsansatz. Die maximale Länge je Stufe wurde vom Auftraggeber vorab mit 1,3 x d2 festgelegt. Mit Hilfe diverser Geometrieempfehlungen wurde zunächst der Meridianschnitt des Pumpenlaufrads entworfen und dafür die Beschaufelung eindimensional ausgelegt. Unter Verwendung des Software-Pakets Ansys-Bladegen wurde ein 3D-Modell der Hydraulik erstellt, mit Hexaederelementen vernetzt und die Strömung mit Ansys-CFX stationär numerisch simuliert. Die Berechnungsergebnisse wurden analysiert und daraus jeweils Optimierungsmaßnahmen abgeleitet, mit denen die Geometrieparameter „manuell“ verändert wurden.

Auf Basis der Erkenntnisse der CFD-Simulation wurde das Laufrad der Pumpe somit Schritt für Schritt optimiert. Für die Rückführpartie beziehungsweise den Diffusor der Pumpe wurde zur Auslegung und Optimierung hingegen ein vollkommen parametrisiertes 3D-Modell entworfen. Unter Verwendung des sogenannten Design-of-Experiments (DoE) und der Response-Surface-Methode wurden ausgewählte Geometrieparameter automatisch optimiert. Um verlässliche Berechnungsergebnisse für die hochgradig instationäre Strömung im Teilllastbereich zu erhalten, wurde die Performance der gesamten Pumpenstufe auch mithilfe transienter CFD-Simulationen validiert. Die Abnahmeprüfung durch den Anwender erfolgte abschließend im Zuge eines Modellversuchs im eigenen Labor, auch die homologe Modellmaschine wurde von den Ingenieuren gebaut. Mithilfe experimenteller Untersuchungen gemäß ISO9906 und diversen Aufnahmen mit Hochgeschwindigkeitskameras konnten die mittels 3D-CFD-Simulation erzielten Berechnungsergebnisse für den gesamten Einsatzbereich der Pumpe bestätigt werden.

Besonderer Fokus auf Teillast-Verhalten

Visualisierung von Wirbelstrukturen
Visualisierung von Wirbelstrukturen bei unterschiedlichen Fördermengen.

Besondere Beachtung wurde im Zuge des Modellversuchs dem Teillast-Verhalten der Pumpe geschenkt. So wurden die Schwingungen an der Pumpe im Betrieb an verschiedenen Positionen gemessen, um den Nachweis zu liefern, dass die Schwinggeschwindigkeiten den API 610-Grenzwert von 5 mm/s nicht überschreiten. Des Weiteren konnte der vollständige Betriebsbereich bis zur Nullförderhöhe für zulässig erklärt werden, da die Zunahme der Schwingungen in Bezug auf den Bestpunkt der Maschine immer unter 30 % gehalten wurde. Zusätzlich wurden beispielsweise im schaufellosen Raum zwischen Laufrad und Diffusor Druckpulsationen über den gesamten Betriebsbereich der Pumpe aufgezeichnet.

Die Frequenz und Amplitude der gemessenen Druckpulsationen nehmen in Richtung Teillastbetrieb (Q/Qopt ge­gen 0) stark zu. Begründen lässt sich dies durch die immer stärkere Ausbildung der rotierenden Ablösungen im schaufelfreien Raum und der Entstehung eines Vordralls im Zulaufbereich der Pumpe. Die Auswertung der CFD-Simulationen im Hinblick auf Verwirbelungen verdeutlich diese These.

Kennlinien-Stabilisierung
Kennlinien-Stabilisierung durch optimal ausgeführten Drallbrecher.

Der einsetzende Vordrall bei abnehmender Fördermenge beeinflusst nicht nur die Druckpulsationen, sondern lässt auch die gemessene Förderhöhe deutlich abnehmen. Das ist der Fall, weil die Fliehkraft des Vordralls für einen Anstieg des saugseitigen Drucks sorgt, welcher aber nicht von der Zuströmung stammt, sondern von der Pumpe selbst. Folglich lässt die ISO 9906 eine Förderhöhenkorrektur zu. Im Zuge des Versuchs konnte gezeigt werden, dass der Abfall der Nullförderhöhe durch die Installation eines Drallbrechers völlig unterbunden werden kann, was somit zur Stabilisierung der Pumpenkennlinie beiträgt.

Fazit: Der Betreiber der optimierten Pumpe profitiert also nicht nur von einer hocheffizienten Lösung, sondern darf sich auch über einen stabilen Teillastbetrieb der Pumpe und eine geringe Geräusch- und Pulsationsentwicklung freuen. Die Reduktion der Druckpulsationen wirkt sich dabei nicht nur positiv auf die Lebensdauer der Pumpe, sondern auch auf einen ruhigen und wartungsarmen Betrieb der gesamten Anlage aus.

Engineering Summit 2021

Logo Engineering Summit

Wie die Dekarbonisierung und der Trend zur Nachhaltigkeit den europäischen Anlagenbau verändern wird, ist Thema des kommenden Engineering Summit, der vom 1. bis 2. Dezember 2021 in Darmstadt stattfinden wird. Unter dem Motto „Welcome to the new realities in plant engineering“ werden Führungskräfte aus dem europäischen Anlagenbau die aktuellen Entwicklungen der Branche diskutieren.

Im Zentrum steht die Frage, welche Chancen die globale Energietransformation für die Branche bietet. Denn klar ist: Ohne den verfahrenstechnischen Anlagenbau können Wasserstoff-Wirtschaft, Umstellung der Metallurgie-, Chemie- oder Zementindustrie auf grünen Strom und eine klimaneutrale Mobilität nicht gelingen. Gleichzeitig schaffen neue Verfahren und Prozesse enorme Chancen für technologie-getriebene Anlagenbau-Unternehmen, gleichzeitig allerdings auch enorme Herausforderungen im Hinblick auf eigene Investitionen zur Technologieentwicklung und Abwicklungskompetenz. Mehr Informationen unter www.engineering-summit.de

Kostenlose Registrierung

Bleiben Sie stets zu allen wichtigen Themen und Trends informiert.
Das Passwort muss mindestens acht Zeichen lang sein.
*

Ich habe die AGB, die Hinweise zum Widerrufsrecht und zum Datenschutz gelesen und akzeptiere diese.

*) Pflichtfeld

Sie sind bereits registriert?