Ein am Rostocker Standort des Leibniz-Instituts für Katalyse (Likat) entwickelter Katalysator auf Mangan-Basis soll mittels erneuerbarer Energien Methanol produzieren. Neben Wind oder Sonne werden dafür Wasser und CO2 benötigt. Aus CO2 und Wasser entsteht im Reaktionsverbund ein Synthesegas, das mithilfe des Katalysators zu Methanol umgewandelt wird. „Das Metallatom bildet das katalytische Zentrum. Es wird von einer Art Gerüst fixiert und geschützt, dem sogenannten Liganden“, so Gordon Neitzel, am Likat in den Bereichen Angewandte Homogenkatalyse und Carbonylierungen tätig. Er hat den Katalysator entscheidend optimiert, indem er neue Strukturen für den Liganden entwickelte. So kann kein Kohlenmonoxid das Mangan-Atom im Zentrum des Katalysators angreifen und die Komplexverbindung zerstören. Die Arbeiten sind Teil des Forschungsverbunds E4MeWi. Die Abkürzung steht für „Energie-Effiziente Erneuerbare Energien basierte Methanol-Wirtschaft“. Das Verbundprojekt wurde vom Bundesministerium für Wirtschaft und Energie für drei Jahre mit 2 Mio. Euro gefördert. Projektpartner sind außerdem Creativequantum, Ineratec, die Ruhr-Universität Bochum und der Chemiepark Bitterfeld-Wolfen. „Auch eine klimaneutrale Wirtschaft, wie sie die Bundesrepublik bis 2045 anstrebt, braucht Basischemikalien“, erläutert Neitzel. Für die Methanol-Produktion, derzeit weltweit 110 Mio. t jährlich, wird traditionell Erdgas verwendet – je nach Verfahren mit Drücken von 50 bis 100 bar und Temperaturen zwischen 200 und 300°C. Dies führt zu einem CO2-Ausstoß von 1,5 t für jede produzierte Tonne Methanol. Das Projekt zielt auf eine Alternative zum herkömmlichen Verfahren ab. Sein Kernstück ist der Katalysator, der H2 und CO in gelöstem Zustand so reagieren lässt, dass Methanol entsteht. Das Kohlenmonoxid wird zuvor aus CO2 gewonnen. Der dafür genutzte Mangan-Katalysator wurde ursprünglich am Likat in der Themengruppe von Dr. Kathrin Junge aus der Abteilung Nachhaltige Redoxreaktionen entwickelt. Er ermöglicht ein Vorgehen, das den Aufwand an Druck und Temperatur für die Methanolherstellung halbiert. Den Projektbeteiligten schwebt eine Anlage in Containergröße vor, die am Feldrand, auf Betriebs- oder Bauernhöfen lokale Ressourcen für eine nachhaltige Wertschöpfung nutzt: Wind- und Sonnenenergie, CO2-Emissionen aus Punktquellen und aus Biogas, Plastikmüll oder Holzabfällen.

Das Projekt wurde vom Bundesministerium für Wirtschaft und Energie mit 2 Mio. Euro gefördert. (Bild: Dalle 3 / OpenAI)

Aus CO2 und Wasser entsteht im Reaktionsverbund ein Synthesegas, das mithilfe des Katalysators zu Methanol umgewandelt wird. „Das Metallatom bildet das katalytische Zentrum. Es wird von einer Art Gerüst fixiert und geschützt, dem sogenannten Liganden“, so Gordon Neitzel, am Likat in den Bereichen Angewandte Homogenkatalyse und Carbonylierungen tätig.

Er hat den Katalysator entscheidend optimiert, indem er neue Strukturen für den Liganden entwickelte. So kann kein Kohlenmonoxid das Mangan-Atom im Zentrum des Katalysators angreifen und die Komplexverbindung zerstören.

Energie-Effiziente Erneuerbare Energien basierte Methanol-Wirtschaft

Die Arbeiten sind Teil des Forschungsverbunds E4MeWi. Die Abkürzung steht für „Energie-Effiziente Erneuerbare Energien basierte Methanol-Wirtschaft“. Das Verbundprojekt wurde vom Bundesministerium für Wirtschaft und Energie für drei Jahre mit 2 Mio. Euro gefördert. Projektpartner sind außerdem Creativequantum, Ineratec, die Ruhr-Universität Bochum und der Chemiepark Bitterfeld-Wolfen.

„Auch eine klimaneutrale Wirtschaft, wie sie die Bundesrepublik bis 2045 anstrebt, braucht Basischemikalien“, erläutert Neitzel. Für die Methanol-Produktion, derzeit weltweit 110 Mio. t jährlich, wird traditionell Erdgas verwendet – je nach Verfahren mit Drücken von 50 bis 100 bar und Temperaturen zwischen 200 und 300°C. Dies führt zu einem CO2-Ausstoß von 1,5 t für jede produzierte Tonne Methanol.

Nutzung lokaler Ressourcen als Ansatz

Das Projekt zielt auf eine Alternative zum herkömmlichen Verfahren ab. Sein Kernstück ist der Katalysator, der H2 und CO in gelöstem Zustand so reagieren lässt, dass Methanol entsteht. Das Kohlenmonoxid wird zuvor aus CO2 gewonnen.

Der dafür genutzte Mangan-Katalysator wurde ursprünglich am Likat in der Themengruppe von Dr. Kathrin Junge aus der Abteilung Nachhaltige Redoxreaktionen entwickelt. Er ermöglicht ein Vorgehen, das den Aufwand an Druck und Temperatur für die Methanolherstellung halbiert.

Den Projektbeteiligten schwebt eine Anlage in Containergröße vor, die am Feldrand, auf Betriebs- oder Bauernhöfen lokale Ressourcen für eine nachhaltige Wertschöpfung nutzt: Wind- und Sonnenenergie, CO2-Emissionen aus Punktquellen und aus Biogas, Plastikmüll oder Holzabfällen.

Sie möchten gerne weiterlesen?