Auf dem Weg in die CO2-neutrale Gesellschaft unterstützen Power-to-X-Prozesse (P2X), also Verfahren zur Umwandlung von erneuerbarer Energie in chemische Energieträger, bei der Verzahnung unterschiedlicher Sektoren. Aus Wind- oder Sonnenstrom lassen sich etwa synthetische Kraftstoffe herstellen, die klimafreundliche Mobilität und Gütertransporte ohne zusätzliche Treibhausgasemissionen ermöglichen. Die dafür unter anderem notwendige Fischer-Tropsch-Synthese (FTS), bei der aus Kohlenmonoxid und Wasserstoff die langkettigen Kohlenwasserstoffe für die Produktion von Benzin oder Diesel gewonnen werden, ist ein etabliertes Verfahren der chemischen Industrie.
Allerdings sind die dabei ablaufenden Prozesse auch über hundert Jahre nach ihrer Entdeckung wissenschaftlich nicht vollständig verstanden: „Das betrifft vor allem die strukturellen Veränderungen der für den Prozess notwendigen Katalysatoren unter industriellen Bedingungen“, sagt Professor Jan-Dierk Grunwaldt vom Institut für Technische Chemie und Polymerchemie (ITCP) des KIT. „Während der Reaktion können sich unerwünschte Nebenprodukte bilden oder es kann zu störenden strukturellen Änderungen des Katalysators kommen. In welcher Form das während der Reaktion genau geschieht und welche Auswirkungen das auf den Gesamtprozess hat, wurde bislang nicht ausreichend erklärt.“
Einblick mit Hilfe von Röntgenstrahlung
In einem transdisziplinären Projekt, gemeinsam mit P2X-Expertinnen und Experten aus dem Institut für Mikroverfahrenstechnik (IMVT) und dem Institut für Katalyseforschung und -technologie (IKFT) des KIT, ist dem Team nach eigenen Angaben nun ein Durchbruch beim Verständnis der FTS auf atomarer Ebene gelungen. „Bei der Untersuchung nutzen wir Methoden der Synchrotronforschung, nämlich die Röntgenabsorptionsspektroskopie und die Röntgenbeugung“, sagt Marc-Andrée Serrer (IKFT), einer der Autoren der Studie. „Damit konnten wir erstmals einem FTS-Katalysator quasi auf atomarer Ebene unter realen Prozessbedingungen bei der Arbeit zusehen.“
Zwar wurden katalytische Reaktionen bereits zuvor mit einem Synchrotron – einem speziellen Teilchenbeschleuniger zur Erzeugung von besonders intensiver Röntgenstrahlung untersucht. Aber Reaktionen, die wie im Realbetrieb einer P2X-Anlage über einen längeren Zeitraum sowie unter hohen Temperaturen und Drücken stattfinden, stellten bislang eine Hürde dar. Für das Experiment am KIT wurde nun eine neuartige Hochdruck-Infrastruktur an der für Katalysatorstudien designierten CAT-ACT-Messlinie (CATalysis und ACTinide Messlinie) am Synchrotron des KIT aufgebaut. Mit dieser Infrastruktur, die als Teil der Kopernikus-Projekte der Bundesregierung zur Energiewende entstanden ist, konnte die Arbeitsweise eines kommerziellen Kobalt-Nickel-Katalysators bei realitätsnahen Reaktionsbedingungen von 250 °C bei 30 bar Druck für mehr als 300 h bei der FTS bestimmt werden. Dabei wurden, ebenfalls zum ersten Mal bei einem solchen Experiment, genügend Kohlenwasserstoffe produziert, um diese anschließend zu analysieren.
Katalysatorentwicklung mit dem Computer
Mit dem Experiment konnten Kohlenwasserstoff-Ablagerungen identifiziert werden, die eine Diffusion der reaktiven Gase zu den aktiven Katalysatorpartikeln erschweren. „Im nächsten Schritt kann dieses Wissen dazu verwendet werden, den Katalysator speziell gegen diese Deaktivierungsmechanismen zu schützen“, sagt Grunwaldt. „Das geschieht etwa durch die Modifikation mit Promotoren, also Stoffen, welche die Eigenschaften des Katalysators verbessern.“ Perspektivisch soll das neuartige atomare Verständnis von katalytischen Reaktionen auch Computersimulationen zur schnellen, ressourcenschonenden und kostengünstigen Entwicklung von maßgeschneiderten Katalysatoren für P2X-Prozesse ermöglichen.
Projekte mit Fischer-Tropsch-Prozessen
Verschiedene Power-to-X-Projekte planen den Einsatz von Fischer-Tropsch-Prozessen, vor allem zur Herstellung von Kerosin:
- Sasol, Linde, Enertrag und Navitas wollen ein Konzept für die Produktion von nachhaltigem Flugkraftstoff entwickeln. Hier soll Synthesegas, das aus kohlenstoffhaltigen Abfällen
Anzeigeund grünem Wasserstoff gewonnen wird, per Fischer-Tropsch-Verfahren in längerkettige Kohlenwasserstoffe umgewandelt werden.
- Auch der Flughafen Rotterdam Den Haag will gemeinsam mit einem Anlagenbaukonsortium die Herstellung von erneuerbarem Flugtreibstoff vorantreiben. Auch hier wird Synthesegas in einer Fischer-Tropsch-Synthese von Ineratec in synthetische Kohlenwasserstoffe konvertiert. Das Synthesegas stammt dabei aus der Umwandlung von CO2, das mit Hilfe der Direct-Air-Capture-Technologie des Schweizer Unternehmens Climeworks aus der Umgebungsluft zu entnommen wird.
- Ähnlich ist das Vorgehen bei einer Versuchsanlage des Kopernikus-Projekts P2X.
Mehr Informationen zur Originalpublikation der Karlsruher Forscher finden Sie auf der Homepage der Fachzeitschrifts Reaction Chemistry & Engineering.